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The effect of a two-dimensional cascade of thin
streamwise plates on homogeneous turbulence

By J. M. R. GRAHAM

Department of Aeronautics, Imperial College, London SW7 2BY, UK

(Received 26 September 1996 and in revised form 5 September 1997)

An analysis is given, based on rapid distortion theory, of the effect on homogeneous
turbulence when it passes through a linear cascade of thin flat plates or aerofoils and
in particular the turbulence that emerges on the downstream side. The main results are
evaluated for the limiting case in which the spacing ratio of the cascade is very small
so that the cascade tends to completely suppress the normal component of velocity of
the turbulence everywhere, both within the cascade and downstream of it, resulting in
a ‘planar ’ (quasi-two-dimensional) turbulence. Some comparisons with experimental
measurements of grid generated turbulence passed through cascades of thin aerofoils
and in the regions adjacent to the wakes of isolated streamwise plates in a wind tunnel
are shown.

1. Introduction

Rapid distortion theory (RDT) in which the nonlinear and viscous components are
neglected in the calculation of changes to a turbulent flow, has been used with some
success for a number of cases where the mean strain field which distorts the turbulence
is applied rapidly and both it and the boundary conditions on the flow are fairly simple.
Examples are the cases analysed by Batchelor & Proudman (1954) : one-dimensional
strain, no boundaries ; Hunt (1973) : two-dimensional strain, circular boundary; and
Hunt & Graham (1978) : suddenly applied blocking by a plain boundary.

Conditions which must be satisfied for RDT to apply to convected turbulence are :
(i) (u!¢}U¢) l}L¢ ' 1.
(ii) high-turbulence Reynolds number: Re

T
¯ u!¢ L¢}ν( 1. Here u!¢ is a charac-

teristic velocity scale of the turbulence, for example the incident r.m.s. fluctuating
streamwise component, L¢ a lengthscale of the turbulence such as the integral
lengthscale, l a lengthscale of the mean strain field, usually a body lengthscale and U¢

the mean velocity of the free stream. Condition (i) specifies that the mean strain field
applied to the turbulence by, for example, a change in the boundary conditions
encountered by the flow should be applied sufficiently rapidly. This requirement is that :

(iii) T
S
}T¢ ' 1, where T

S
is the time over which the strain is applied and T¢ is the

turnover timescale of the turbulence, L¢}u!¢. In the case of convected turbulence, as
considered here, this implies that the product : (x

"
}L¢)[(u!¢}U¢)' 1, where x

"
is the

downstream distance from the point of first encounter of the mean strain field by the
turbulence to the point at which the distorted turbulence field is to be evaluated. For
weak turbulence (u!¢}U¢ ' 1), as assumed here, this condition allows x

"
to be of order

L¢, but not (L¢. Recent studies by Perot & Moin (1995) using direct simulation and
by Aronson, Johansson & Loefdahl (1997) using wind-tunnel measurement of shear-
free turbulence suddenly blocked by a plane streamwise boundary have shown that the
convective downstream distance x

"
(or time) within which RDT gives reasonable
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agreement with the actual distortion that occurs, corresponds to about one integral
lengthscale L¢ from the leading edge (or onset) of the blocking boundary. However the
suppression of the transverse component of the turbulence normal to the boundary
continues to be reasonably predicted for a much longer streamwise distance (or time).

In the present paper we are interested in the effect on turbulence passing through a
linear cascade of thin flat plates and the form of the turbulence which emerges on the
downstream side. The analysis follows closely that of Hunt & Graham (1978,
hereinafter referred to as HG) for turbulence suddenly brought into contact with a
plain boundary. The analysis was based on RDT and the turbulence was presumed to
encounter a long plane wall which had the property of imposing, principally, a zero
normal boundary condition on the turbulence without imposing a mean shear. HG
also considered the effect of a zero tangential velocity wall boundary condition on the
turbulence. The Stokes layer analysis for cases where it is applicable demonstrates an
effect which is confined to a region next to the wall of thickness

O²L¢[x
"
}(L¢ Re

T
)]"/#´.

With the above assumptions and with sufficiently high Reynolds number either the
Stokes layer or any mean flow boundary layer at x

"
}L¢ not ( 1 can be made thin

enough compared to the ‘source ’ layer to be neglected.
The process of turbulence encountering a plane wall can be realized approximately

in a number of ways, none of which are uncontroversially representative of this
application of RDT. The main comparisons made in HG were with measurements of
turbulence adjacent to a moving belt (Thomas & Hancock 1977) in order to remove as
far as possible the effects of mean shear at the boundary. The incident turbulence was
generated in the usual way by a biplanar grid abutting the walls of the wind tunnel. The
layer of incident turbulence which evolved under the influence of the wind tunnel wall
and the mean shear of the boundary layer on it was then removed by suction some way
downstream of the grid bringing a new unsheared and unconstrained stream of
turbulence down onto the moving belt. In this way an approximately shear-free
turbulent layer was generated at the expense of some unquantified mean strain field
effect at the suction slot. A number of experiments of this type have been undertaken,
the first by Uzkan & Reynolds (1967) and the most recent by Aronson et al. (1997).
Comparisons between theory and experiment were also described in HG for another
geometry. The measurements of the normal component of Reynolds stress were made
for grid turbulence incident on a long thin flat streamwise plate in the middle of the
flow with its leading edge well downstream of the grid (Graham 1975). Both mean and
fluctuating shear layers were present, therefore, in this case, but in the region of the
measurements they were thin compared to the lengthscale of the turbulence and
therefore the thickness of the main blockage layer. Both types of experimental
realization, assuming that they achieved what was intended (and both types of flow
may be subject to quite significant undesired effects at the ‘ leading edge’), involve a
rapid application of a new zero normal velocity boundary condition to the turbulence
field. Even if the change of boundary condition may be considered to be applied
instantaneously, as shown in HG Appendix A, the turbulence flow field for these
convective flows is inhomogeneous in the streamwise direction over a distance of order
L¢. This is the region within which there is a significant pressure field associated with
the interaction between the turbulence and the leading edge. The simplified theory
given for the infinite plane wall can only be applied downstream of this inhomogeneous
leading-edge region which conflicts somewhat with the requirement that x

"
}L¢ should

be no more than O(1) for RDT to apply.
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Perot & Moin (1995) analysed the plane wall case by direct simulation of the full
Navier–Stokes equations. No RDT assumptions are therefore made and computations
were carried out for turbulence Reynolds numbers κ#}νε, κ being the turbulence energy
and ε its dissipation rate, up to 374. In these numerical experiments the problem was
transferred to the time domain in which an infinite plane wall was materialized at time
t¯ 0 into a previously homogeneous field of turbulence and the subsequent time
evolution studied. This type of realization removes the initial streamwise inhomo-
geneity along the wall owing to the leading edge. Perot & Moin examined three
different boundary condition cases : (i) zero tangential velocity with consequently zero
normal velocity gradient, (ii) zero normal velocity with zero tangential velocity
gradient (zero shear) and (iii) zero normal and tangential velocity at the wall. The
results for cases (ii) and (iii) for which the zero normal velocity boundary condition
applies show that the result of RDT given in HG is correct in the limit Re

T
U¢ for

very small times after the boundary insertion. Subsequent evolution of the turbulent
wall layer should be seen as evolution of the turbulence away from this initial RDT
state as the neglected nonlinear and viscous terms take effect. In case (iii), the solid wall,
the evolution of tangential Reynolds stress away from the initial RDT peak at the wall
is very evident but the normal Reynolds stress in both cases (ii) and (iii) appears to
continue to be damped at a rate close but not exactly equal to that predicted in HG.
The results have been generally confirmed by the experiments of Aronson et al. (1997).
A DNS analysis of turbulence suddenly brought into contact with a free surface, case
(ii) studied by Perot & Moin, has also been carried out by Walker, Leighton & Garza-
Rios (1996) who examined this case in great detail and obtained results in general
agreement with those of Perot & Moin.

These studies have been motivated by practical problems such as those relating to
the prediction of turbulent ship-wake signatures in the ocean as well as the desire to
obtain a better understanding of the mechanisms controlling wall turbulence. Near-
wall effects are of great importance in Reynolds average turbulence models for
boundary layers. Wall damping functions (e.g. Gibson & Launder 1978) have been
developed to simulate the effects, but up to the present still over-simplify the long-term
evolution of turbulence adjacent to a wall.

The present paper is concerned with the rapid distortion of a convected turbulence
field incident on and emerging from an infinite, unstaggered cascade of flat plates, with
the assumption that any turbulence production from the boundary layers and wakes
of the elements of the cascade is restricted to very thin regions and if necessary is
sufficiently removed in scale to be separated out or ignored. The plates are therefore
assumed to present an infinite stack of plane surfaces of finite streamwise extent
(chord) which are nominally shear free and tend to suppress one transverse component
of the turbulence. Dowling (1985), Balakumar & Widnall (1986) and Atassi & Gebert
(1987) have all studied theoretically the related problem of the interaction of a large
eddy break-up device (LEBU) with representations of incident turbulence in a
boundary layer. Dowling (1985) carried out a two-dimensional analysis of the
interaction of the LEBU in the form of a short plate above a wall with a single vortex
representing an eddy. Balakumar & Widnall (1986) and Atassi & Gebert (1987) each
analysed the effect of a short streamwise plate of infinite span placed above a plane wall
on the individual three-dimensional Fourier components of the turbulence. The former
followed an approach developed for the thin aerofoil}oblique gust problem (Reissner
1947; Graham 1970) approximating the solution to obtain results for the downstream
flow field. The latter solved the problem numerically and similarly calculated the
downstream velocity field. All these studies found the normal component of fluctuating
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velocity downstream of the device to be considerably reduced, the most effective
reduction being obtained for wavenumbers of the order of the inverse of the device
chordlength. Also it appeared that the reduction obtained became less as the distance
between the LEBU and the wall was reduced. In the present work we consider the case
of a cascade of plates of long chord compared with the lengthscale of the turbulence.
A much simpler expression can then be obtained for the downstream velocity field
which allows the statistics of the resulting turbulence to be calculated without excessive
computation.

When convected turbulence interacts with a shear free plane surface, RDT predicts
that downstream of the (O(L¢)) leading-edge region the response or image field of the
turbulence in the surface is homogeneous in the plane of the surface, convected with
the free-stream turbulence at speed U¢ and hence gives rise to a purely kinematic field
with no induced pressure field. If the imposed boundary is a two-sided streamwise plate
of sufficient length intersecting the turbulence, then the wall layers which occur on
either side of this plate will be of similar form downstream of the leading-edge region.
For a finite-length plate the turbulence leaving the downstream end does not
immediately revert to homogeneity in the direction normal to the interface, even within
the limits of RDT, because of the presence of a vortex wake shed from the trailing edge
of the plate. This vorticity is associated with the changes in circulation around the plate
and is additional to any viscous, momentum defect wake which may also be generated.
In the limit of infinite Reynolds number and zero plate thickness, the vortex wake
forms an infinitessimally thin sheet of vorticity of strength specified by the
Kutta–Joukowski trailing-edge condition and convected at the free-stream speed. If the
plate is long enough for the trailing edge to be clear of the leading-edge region so that
a homogeneous region is formed on the plate, the wake sheet generates the same purely
kinematic field as does the plate in the homogeneous region. The wake sheet therefore
acts like a stress-free surface which continues the normal velocity damping effect of the
plate. Its effect continues downstream of the trailing edge of the plate until long-term
interaction with the turbulence field causes sufficient distortion of the wake vorticity to
destroy its effect. The Kutta–Joukowski trailing-edge condition is the usual inviscid
condition which specifies continuity of pressure across a sharp trailing edge of a plate
or aerofoil. At finite Reynolds numbers and for non-zero trailing-edge thickness the
Kutta–Joukowski condition may not be a very good approximation to the flow
conditions for scales comparable with the wake displacement thickness at the trailing
edge but is satisfactory for the larger scales.

In the case of a cascade, it is expected that the normal component of the turbulence
will continue to be suppressed downstream as if the plates of the cascade extended
much further. Within the framework of RDT this is a consequence of the vortex sheets.
Figure 1 shows, as an example of this, a plot of the RMS streamwise and normal
velocity components of grid generated turbulence after it has passed through a cascade
of thin aerofoils. Also shown are the same components at the same downstream
distances from the grid in the absence of the cascade. It is clear that the normal
component of velocity is strongly suppressed and remains so while the streamwise
component is less strongly affected. The main case evaluated theoretically is that when
the cascade gap tends to zero on the lengthscale of the turbulence. This cascade has the
strongest effect but for an inviscid analysis the Reynolds number must be high enough
for the viscous layers to be negligible.

In practice, turbulence interacts with a cascade of aerofoils whenever it enters a blade
row in a turbomachine. In these cases the incident turbulence either is present in the
inlet flow to the engine owing to ingestion of atmospheric turbulence or wakes and
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boundary layers originating upstream of the inlet or it arises from upstream
components such as other blade rows in the machine. Many different scales may be
present and the geometry is more complex than is considered here. Mean flow
curvature is one of the significant effects on the turbulence (Maxey 1978) which is not
considered in the present analysis. The main concern in turbomachinery is with
induced effects of loading, noise and heat transfer. In another field, honeycombs and
other flow straighteners in wind tunnels and ducts interact with free-stream turbulence
and are used as turbulence suppressors. They affect the flow by a combination of
streamwise viscous resistence and transverse velocity suppression.

Interaction of homogeneous free-stream turbulence with linear cascades of thin
aerofoils at zero or small mean incidence has been analysed for general cases by Kullar
& Graham (1986). The main aim of that work was to predict the loadings induced on
the cascade and in compressible cases the associated acoustic pressure field using
analysis based on unsteady thin aerofoil theory. The assumption was made that the
flow conditions were such that the cascade generated a linear response to the
turbulence which could be calculated for individual wavenumbers independently of
any mean strain field and the results superposed. This approach is equivalent to the
HG analysis and makes the same assumptions. In the case of a cascade of high solidity
(small h) the leading-edge effect is shown to be confined to a region behind the leading
edge of length of order h, the cascade spacing. It is therefore more possible if the
spacing is small to obtain a region within and downstream of the cascade where the
flow field can be treated as homogeneous in the streamwise direction but is still close
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enough to the onset of the disturbance to the incident turbulent flow for the RDT
assumptions to hold.

2. Theory

The flow geometry, as shown in figure 1, consists of a linear, unstaggered cascade of
thin plates

0!x
"
! c, ®¢!x

#
!¢, x

$
¯ nh, ®¢! n!¢,

at zero incidence through which an incompressible, turbulent flow passes at mean
speed U¢. For the purposes of this analysis the origin of coordinates is located at the
leading edge of one of the plates with x

"
streamwise, x

#
spanwise and x

$
normal. For

some later comparisons with measured data the origin of x
"
is shifted forward to the

turbulence grid.
The incident turbulence has corresponding velocity components (u

"
¢, u

#
¢, u

$
¢) and

is characterized by its longitudinal integral lengthscale L¢. We consider first the case :

h'L¢. (1)

The chord c of the plates is assumed to be of order L¢. This cascade for which the
relative spacing tends to zero in the limit is one which will have the strongest effect on
suppressing the normal velocity component of the turbulence as it passes through. It
is assumed that the Reynolds number of the flow is sufficiently high for an inviscid
analysis to be appropriate. Hence, the plates act to block the normal component of the
turbulence u

$
but steady and unsteady viscous boundary layers and wakes are thin

enough to be neglected. In the notation of HG, B(v)U 0 and we concentrate on the
source layer B(s) which arises owing to the blocking action.

Since the mean flow U¢ is undisturbed by the cascade and since quadratic and
viscous terms are neglected (RDT), the transport equation for the vorticity ζ of the
turbulence is :

¥ζ}¥tU¢ ¥ζ}¥x
"
¯ 0. (2)

The whole vorticity field is convected with the free-stream speed U¢ as a frozen
distribution and the effect of the plate on the turbulence is irrotational outside the
wake.

The incident turbulence velocity field is assumed to be homogeneous and can
therefore be represented by the Fourier integrals :

u¢(x, t)¯&&&u# ¢(k) exp i(ωt®k
j
x
j
) dk, (3)

with ω¯k
"
U¢ from equation (2).

Provided the chord c of the plates is sufficiently large, there exists a region of
streamwise homogeneity on the plates where the direct influence of the leading edge has
become negligible. In the case of an isolated plate with c(L¢ the region of influence
of the leading edge was shown in HG (Appendix A) to extend a distance of about L¢

downstream of the leading edge. Since RDT really only applies within a distance of
about L¢ from the leading edge (Perot & Moin 1995; Aronson et al. 1997) the extent
over which both RDT and planewise homogeneity may be simultaneously assumed to
apply accurately is very limited. However, the RDT prediction of the component of
Reynolds stress normal to the plate agrees reasonably well with measurements over a
much longer distance (Thomas & Hancock 1977). In the case of a cascade with small
spacing h'L¢, the inhomogeneous leading-edge region is smaller, only extending a
distance O(h). The flow within a cascade having c¯O(L¢) will therefore be
homogeneous within a longer region. The flow field is also homogeneous in the
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spanwise direction and therefore each Fourier component of the flow field can be
expressed as:

u(k)¯u# ¢(k) exp i(ωt®k
j
x
j
)¡²φ# (k,x

$
) exp i(ωt®k

"
x
"
®k

#
x
#
)´, (4)

where φ is the velocity potential due to the blocking effect of the cascade. Since the
velocity field is divergence-free, φ# satisfies :

¥#φ# }x#

$
®(k#

"
k#

#
)φ# ¯ 0, (5)

with the boundary condition on the plate :

¥φ#

¥x
$

u#
$
¢ exp(®ik

$
nh)¯ 0 on x

$
¯ nh, n¯ all ³ integers. (6)

The solution to (5) and (6) for the flow field in the region between plates n and n1
is :

φ# ¯
®u#

$
¢

τ
f(k

$
, τ,x!

$
) exp(®ik

$
nh), (7)

where τ¯ (k#

"
k#

#
)"/#,

f(k
$
, τ,x!

$
)¯

²cosh(τx!

$
) exp(®ik

$
h)®cosh(τ[h®x!

$
])´

sinh(τh)

and x!

$
is the local coordinate: 0%x!

$
(¯x

$
®nh)% h.

Hence

u
"
¯ 0u# "¢ exp(®ik

$
x!

$
)

ik
"

τ
u#
$
¢ f(k

$
, τ,x!

$
)1 exp(i(ωt®k

"
x
"
®k

#
x
#
®k

$
nh)), (8)

u
#
¯ (u# #¢ exp(®ik

$
x!

$
)

ik
#

τ
u#
$
¢ f(k

$
, τ,x!

$
)* exp(i(ωt®k

"
x
"
®k

#
x
#
®k

$
nh)), (9)

and

u
$
¯ u#

$
¢ 0exp(®ik

$
x!

$
)®

sinh(τx!

$
) exp(®ik

$
h)sinh(τ[h®x!

$
])

sinh(τh) 1
exp(i(ωt®k

"
x
"
®k

#
x
#
®k

$
nh)). (10)

At the trailing edge of each plate, owing to the change in the circulation generated
around the plate a vortex sheet is shed into the wake. In this linear approximation,
consistent with RDT, the vortex sheet shed from each plate is assumed to be coplanar
with the plate, in c%x

"
!¢, ®¢%x

#
!¢ and x

$
¯ nh.

Assuming the Kutta–Joukowski condition of zero pressure difference at the trailing
edge, the jump in potential across the sheet, ∆φ

(wake)
, satisfies :

∆φ
(wake)

¯φr
x$=nh+

®φr
x$=nh−

(11)

at the trailing edge x
"
¯ c on the two sides, x

$
¯ nh³, of the nth plate.

To the same order, continuity of pressure across the vortex sheet implies that :

(¥}¥tU¢ ¥}¥x
"
)∆φ#

(wake)
¯ 0. (12)

Conditions (11) and (12) lead to the solution for the potential associated with the wake
sheet :

φ# ¯
®u#

$
¢

τ
f(k

$
, τ,x!

$
) exp(®ik

$
nh) (c%x

"
!¢). (13)

The wake potential field (13) and hence the velocity field between the wake sheets is the
same as that given by (7)–(10) for the flow field within the cascade, both fields being
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convected at the free-stream speed. This is consistent with the fact that since to this
order there is no disturbance pressure field induced by the turbulence on any plate of
the cascade downstream of the leading-edge region, there is no pressure discontinuity
across the plate just as there is no pressure jump across its wake sheet. The loading
induced by the turbulence is concentrated in the leading-edge region of each plate,
Kullar & Graham (1986). Downstream of the leading-edge region the effects of a
streamwise plate and its wake are therefore indistinguishable according to the
assumptions of RDT. The wake sheet may also be considered to be the vorticity shed
by the plate owing to its varying circulation or in the limit of infinite Reynolds number
the result of shedding the plate surface vortex sheets which accommodate a no-slip
condition beneath the potential flow.

This result which applies to all streamwise plates whose chords extend beyond the
leading-edge region, is central to the prediction of the suppression by a cascade of the
normal velocity component of turbulence emerging on its downstream side. It is
therefore also worth comparing the distributions of measured and predicted normal
velocity component downstream of a single (isolated) streamwise plate for which the
same conditions apply. In that case the above analysis predicts that for a long enough
plate, c(L¢ on x

$
¯ 0 the turbulent velocity field induced in the wake region x

"
" c,

O(®L¢)!x
$
!O(L¢) is the same as that given in HG for the B(s) field above a

plane wall. Although RDT should strictly be limited to x
"
CL¢ the results for the u

$
field are predicted well for a much longer streamwise extent. It might therefore be
expected that measurements of u#

$
downstream of the plate would also be in reasonable

agreement with the theoretical prediction whereas u#

"
and u#

#
would have evolved away

from the RDT prediction. The true boundary condition at x
$
¯ 0, x

"
" c, now matches

the velocities and stresses across an interface in the wake following the initial no-slip
region on the plate.

An intermediate result which is also evaluated in the present paper is that for the flow
behind a (biplane) pair of plates which, if of long enough chord, should exhibit the
same flow field as an infinite cascade in the gap between the wakes of the two plates
and the same flow field as the isolated plate in the regions outside the wake pair. These
two results will be considered in more detail later.

In the case of the infinite cascade, although not physically realizable except
approximately, it is of interest to calculate the effect of the obstruction on the
turbulence in the limit of very high solidity when the ratio of the cascade spacing h to
the turbulence lengthscale L¢ tends to zero. This is the case for which the cascade has
the strongest effect on the turbulence and for which the theoretical results are simplest.

Taking the limit h}L¢ U 0 with Re
T

large enough (( (x
"
}L¢) (h}L¢)−#) that the

viscous layers remain much thinner than the gap h, and hence with k
j
hU 0 in equations

(8)–(10) gives :
f(k

$
, τ,x!

$
)U®ik

$
}τ, k

$
nhUk

$
x
$
.

Therefore:

u
"
U 0u# "¢

k
"
k
$

τ#
u#
$
¢1 exp(i(ωt®k

j
x
j
)), (14)

u
#
U 0u# #¢

k
#
k
$

τ#
u#
$
¢1 exp(i(ωt®k

j
x
j
)), (15)

u
$
U 0. (16)

The three-dimensional spectrum function Φ
ij

describing the turbulence is formed from
the products of the Fourier amplitudes u#

j
, see e.g. HG. Thus Φ

ij
¯ u#

i
u#$
j
, where *

indicates a complex conjugate. From here on, for convenience, all wavenumbers and
lengths are assumed to be non-dimensionalized by L¢.
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Therefore, the turbulence spectrum function Φ
ij

downstream of a cascade which
suppresses u

$
, is related to Φ

ij¢
for the incident upstream turbulence by

Φ
ij
¯Φ

ij¢


k
$

τ#
(k

j
Φ

i$
¢k

i
Φ

$j
¢)

k
i
k
j
k#

$

τ%
Φ

$$
¢ (i, j1 3). (17)

If we now assume that the upstream turbulence is isotropic :

Φ
ij¢

¯ 0δij®k
i
k
j

k#
1E¢(k#), (18)

where δ
ij

is the Kronecker delta and E¢(k#) is the energy density of the incident
turbulence at wavenumber k.

Hence downstream:

Φ
ij
¯ 0δij®k

i
k
j

τ# 1E¢(k#) (i, j1 3)

¯ 0 if i or j¯ 3. (19)

This turbulence is isotropic in the (1, 2) plane normal to the axis of the cascade.
Integration of (19), over all wavenumbers :

u#

"
u#

#
¯&&& (Φ

""
Φ

##
) dk¯&&&E¢(k#) dk¯ "

#
(u#

"
¢u#

#
¢u#

$
¢), (20)

showing that the total energy has been reduced by a half.
Since the velocity variances for isotropic turbulence are equal :

u#

"
¯ u#

#
¯ $

%
u#

"
¢ u#

$
¯ 0. (21)

Thus u#

"
}u#

"
¢ and u#

#
}u#

#
¢ are predicted by RDT to be reduced by a cascade in contrast

to the predicted increase of both these Reynolds stress ratios to a value of 1±5 at the
surface of an isolated plate. The results may also be contrasted with a previous analysis
of the effect of a dense cascade (Basuki 1983) as a ‘refracting’ surface like a gauze. This
analysis followed the approach of Batchelor & Proudman (1954) in analysing the effect
of a gauze on homogeneous, isotropic turbulence. The effect of the cascade was
assumed to be represented by a refraction coefficient α operating only on the u

$
component of the velocity field, leading in the limit of high solidity, αU 0, to:

Φ
ij
¯Φ

ij¢
F

j
Φ

i$
¢F

i
Φ

$j
¢F

i
F
j
Φ

$$
¢ (i, j¯ 1, 2, 3), (22)

with F
"
¯ 2k

"
k
$
f «, F

#
¯ 2k

#
k
$
f «, F

$
¯k#

$ 01®
ik

"

(k#

#
k#

$
)"/#1 f «,

and f «¯ 2k#®k#

$
®

ik
"
k#

$

(k#

#
k#

$
)"/#

.

From this refraction analysis the predicted downstream turbulence is not isotropic in
the (1, 2) plane and the u

$
component is never completely suppressed.

3. Frequency spectra and lengthscales

The one-dimensional (frequency) spectrum is defined as:

Θ
ii
(k

"
)¯&&

¢

−¢

Φ
ii
(k) dk

#
dk

$
. (23)



134 J. M. R. Graham

Applying this to equation (19) leads to:

Θ
""

(k
"
)Θ
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(k

"
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¢

−¢

E¢(k) dk
#
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$
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with Θ
$$

(k
"
)¯ 0.
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is finite,
Θ
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(k
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)¯O(k
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) as k

"
U 0.

Hence for isotropic turbulence for which Θ
""

¢(0)¯ 2Θ
##

¢(0)¯ 2Θ
$$
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Θ
""

(k
"
)UΘ
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"
U 0.

Correspondingly for the dimensional lengthscales :
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In order to compute spectra it is necessary to assume a distribution for the incident
energy spectrum E¢(k#). A commonly used form for isotropic turbulence is the Von
Ka! rma! n spectrum:

E¢(k#)¯
g
$
k#

(g
#
k#)"(/'

, (25)

where g
#
¯ 0±558 and g

$
¯ 0±09507. This gives the one-dimensional frequency

spectrum:
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"
¯ 0±1955. (26)

Therefore the one-dimensional spectrum of streamwise velocity downstream of the
cascade:
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where
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, g

%
¯ 0±08726.
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The asymptotic behaviour of the integral I is :

I(k
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U 0)Cπ}2 g−%/$

#
k)/$
"

,

I(k
"
U¢)C 1}2Γ(1}2)Γ(11}6)}Γ(7}3).

Hence the asymptotic behaviour of the turbulence spectra downstream of the cascade
is :

k
"
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"
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Θ
##
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U¢, Θ

""
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C 5}3g
&
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"

.

The main ranges of Θ
""

and Θ
##

are plotted in figures 2 and 3. The crossover point,
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k
"
E 0±9, for the two spectra is approximately unchanged by the cascade and as already

stated the downstream intensities u#

"
and u#

#
are predicted to remain equal. However, the

ratio of the PSDs at the high frequency end of the two spectra Θ
""

:Θ
##

changes from
3}4 upstream of the cascade to 3}5 downstream. Similarly, consistent with the fact that
L

##x"
¯ 0, the low-frequency components of the non-damped transverse velocity

fluctuations, u
#
, are greatly reduced.

4. Comparisons with measured results for grid generated turbulence

Comparisons of the above results can be carried out with nearly homogeneous
isotropic turbulence generated by a grid in a wind tunnel, then passed through a linear
cascade of thin aerofoils or flat plates. The finite gap h between the elements of the
cascade reduces their effect on the turbulence. The maximum effect is then predicted to
occur on each of the planes of the cascade, x

$
¯ nh, coplanar with the elements and the

minimum effect on the planes x
$
¯ (n"

#
) h, midway between. For sufficiently large

aerofoil chords the normal component u
$
is still predicted to be reduced to zero on the

x
$
¯ nh planes. In practice, the measured value of this component will be larger than

zero because of production in the aerofoil boundary layers and wakes and break-up of
the vortex sheet. Also, as discussed earlier, the assumptions of rapid distortion theory
are less tenable with increasing downstream distance from the point of onset of the
distortion. The value of the turbulence on the midplane of the gaps, x

$
¯ (n"

#
) h,

should be less affected by some of these effects and may be calculated by extending the
analysis to the case of finite gaps.

5. Turbulence downstream of a single plate

As a first test, measurements were made of the u#

"
and u#

$
components of the

Reynolds stress just downstream of the trailing edge of a single thin streamwise plate,
equivalent to removing all but one plate of the cascade which is retained in isolation
in the mid-plane of the wind tunnel in a turbulent flow. A biplanar grid with mesh of
side M¯ 150 mm and rectangular section bars of width 25 mm was used to generate
the turbulence. Turbulent flows past two different plates spanning the working section
of the tunnel were measured. Both plates had a thickness of 2 mm with rounded leading
and chamfered trailing edges. One plate had a chord c¯ 250 mm and the other
c¯ 125 mm and each was placed in the tunnel with its leading edge at a distance of 10M
downstream of the grid. Measurements were carried out using hot-wire anemometry at
one mean flow speed giving a Reynolds number at the leading edge based on the grid
mesh of approximately 3¬10& and a turbulence Reynolds number (u!¢ L¢}ν) of about
10% (or κ#}νε of about 5¬10$). The ratio L¢}c was 0±20 and 0±41, respectively, for the
two plates. The rounded leading edges of the plates in these experiments were made
small as a compromise between sharp leading edges with the attendant problem of
leading-edge separation owing to the incidence changes in the incident turbulent flow
and edges with considerable rounding similar to aerofoil leading edges used in the other
cascade experiments. All leading edges generate a region of large mean strain around
the stagnation line with attendant complex distortion of turbulence passing through.
The larger the rounding the more extensive is this region of distortion.

For single, isolated plates the wake is predicted to act as a stress free surface
continuing the normal velocity damping effect of the plate. The variation in Reynolds
stresses predicted by RDT for the region of the plate plane are as given in HG (figure
5), but now on both sides of x

$
¯ 0. These theoretical predictions and the measured
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results for u#

"
and u#

$
taken at different stations downstream of the trailing edges of each

of the plates, and in one case just upstream (i.e. adjacent to the plate surface rather than
its wake) for comparison, are shown in figures 4 and 5. Here and throughout the
following comparisons the Reynolds stresses are shown divided by the corresponding
free-stream value at the same x

"
station in order to attempt to remove the main effects

of streamwise decay. Both components of Reynolds stress show significant increases in
the region close to x

$
¯ 0. This is mainly due to the mean shear in the boundary layer

and wake regions of the plates giving rise to additional turbulence production but may
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also include some of the effects of RDT failure to predict streamwise evolution of the
turbulence as x

"
}L¢ becomes large. Figure 6 shows the wake regions of the mean

velocity corresponding quite well to the regions of raised Reynolds stress, the shorter
plate generating a slightly thinner region. Outside these regions u#

$
shows the damping

of the normal velocity component to be in fair agreement with the theoretical curve.
u#

"
shows a tendency to increase outside the region where production due to mean shear

is significant, which is also in apparent agreement with the theory. In HG the
theoretical predictions were compared with measurements taken by Thomas &
Hancock (1977) in the turbulent wall layer, nominally without mean shear, above a
moving wall. These comparisons showed the measured u#

"
data to lie above the

predicted curve by an increasing amount and with a large peak near the wall as the
turbulence is convected downstream. Perot & Moin (1995) have discussed this result
and shown it to be due, at least partly, to reduced dissipation near the wall relative to
the dissipation in the free stream, bearing in mind that the Reynolds stresses are all
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non-dimensionalized on their corresponding free-stream values at the same streamwise
station. The measurements of Aronson et al. (1997) made at lower Reynolds numbers
than those of Thomas & Hancock, closer to the values used in the computations of
Perot & Moin, are in much better agreement with the latter. Aronson et al. showed, by
applying an artificially raised wall temperature, that the raised u#

"
values could also

have been partly due to contamination of the hot-wire velocity measurements by
temperature fluctuations. Thomas & Hancock’s experiment involved the use of a non-
cooled moving wall from which some heating effect due to friction may have occurred.
In the present case the measured data does also tend to lie above the theoretical curve.
The same non-dimensionalization on local free-stream values has been used. There is
no source of heating but there is a significant effect from the region of increased
production by the mean shear adjacent to the plate and in its wake. There is no clear
difference between the results for the different stations and plates beyond the effect of
the different widths of these mean shear}production regions.

In the case of the Reynolds stress u#

$
, as discussed by Walker et al. (1996), the

dissipation of this component relative to its value near a (free) surface is high reducing
the effect of pressure strain redistribution from the larger u#

"
to the smaller u#

$
near the

surface, thus keeping the latter small in that region.
The present analysis also ignores the effects of distortion of the incident turbulence

by the leading-edge stagnation zones of the cascade plates. Vorticity normal to the
plates is wrapped around the leading edges, subject to intense local stretching balanced
ultimately by viscous effects. This gives rise to additional streamwise vorticity and may
explain greater than predicted velocity fluctuations in the normal and spanwise
directions (Saxena 1994).

6. Turbulence downstream of a double plate

A second series of tests were carried out using a combination of two plates in a
biplane arrangement, one above the other. In this case because the plate wake
combinations are effectively semi-infinite the regions outside the wake pair should
behave as for the single plate according to the above theory. The region between the
wakes should be the same as if the pair of plates were part of an infinite linear cascade.

Reynolds stresses were measured just downstream of the double plate arrangement,
at approximately the same Reynolds numbers as for the single plate, each plate of the
pair having the same geometry as the shorter single plate described above. The plates
were separated by a gap of 12±5 mm and placed in the same flow conditions as the
single plates, so that h}L¢ ¯ 0±25 and L¢}c¯ 0±41. The measured results are compared
with the theoretical predictions in figure 7 (u#

"
) and figure 8 (u#

$
). Outside the double

wake the results are seen to be very similar to the single plate–single wake case.
Between the wakes the measured results for u#

"
are compared with the predicted value

u#

"
}u#

"
¢ ¯ 0±75, for a cascade of infinitessimal gap (equation (21)). The predicted value

of u#

$

which tends to zero for an infinitessimal gap is very sensitive to gap size and
therefore the values predicted by equation (10) for a cascade with the appropriate non-
zero gap are shown. The low-frequency ends of the predicted velocity spectra are
similarly sensitive. These are discussed further in the next section for the infinite
cascade with finite gap.
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7. Turbulence downstream of a cascade with finite gap

Experimental realizations of turbulence passing through cascades of plates or
aerofoils inevitably involve a finite gap. The result for the suppressed component, u

$
,

of the turbulence is most strongly affected by the width of the cascade gap. Since this
is also the component for which the measured results at large x

"
agree best with RDT

it is appropriate to make the comparisons with theoretical predictions for finite gap
width.

Measurements were taken downstream of various cascades of thin aerofoils covering
a cross-section of a wind tunnel from floor to roof. The measurements were made at
points either coplanar with an element (aerofoil) of the cascade or in a mid-plane
halfway between two elements. In the former case RDT predicts u

$
¯ 0 for all gap

widths, but the strong effects of production owing to the mean shear in these regions
obscure this. The mid-plane results are therefore likely to offer a better comparison
with the theory.

From equation (10) which, as was shown, applies equally to the downstream regions
as to the gap between the aerofoils :

u
$
(x

$
¯ (n"

#
) h)¯ u#

$
¢ 0exp(®"

#
ik

$
h)®sinh("

#
τh)

(1exp(®ik
$
h))

sinh(τh) 1 . (29)

Using the form of energy spectrum given in equation (25) :
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Figure 9 shows the variation of the predicted downstream value of u#

$
on a mid-plane

as a function of non-dimensional gap size (h}L¢) as given by equation (30). According
to the theory this should be the largest value of u#

$
downstream of the cascade. For

small gaps the limit of equation (30) as hU 0 shows that u#

$
}u#

$
¢ C 0±531(h}L¢)#/$. A

value of u#

$
}u#

$
¢ ¯ 0±215 is predicted for the mid-plane value downstream in the case of
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the double plate shown in figure 8 which agrees quite well with the measured value.
Because of the initial rapid increase in u#

$
with h, very small gaps with therefore greater

viscous effects would be needed in practice to obtain nearly complete suppression of u#

$
.

The wind-tunnel tests were carried out using linear, unstaggered cascades of
aerofoils. The first cascade consisted of 20 aerofoils of NACA 0015 section and chord
79 mm spaced over the working section’s 900 mm height at 45 mm spacing. The second
consisted of 35 aerofoils of NACA 0008 section, 100 mm chord and 25 mm spacing.
Turbulence was generated by a biplanar grid of the same mesh size of 150 mm as before
but with a bar size of 38 mm. For the main tests the cascades were each placed at 11M
downstream of the grid at which point the ratio L¢}M was 0±38 and hence the ratio
h}L¢ took the values 0±79 and 0±44, respectively, for the two cascades. The turbulence
Reynolds numbers were similar to those for the single plate tests. Further tests were
also conducted with the first cascade at 23M downstream of the 150 mm grid. In this
case L¢}M¯ 0±50 and the ratio h}L¢ ¯ 0±6. More details of these tests are given in
Basuki (1983) and Haidos (1983). Results were also taken using a smaller 75 mm grid
and a larger 225 mm grid. All cascade measurements shown here were made in the mid-
plane of a gap.

Figure 1 showed an example with the Reynolds stresses non-dimensionalized by the
mean free-stream speed. Figure 10 shows the results as ratios u#

"
}u#

"
¢, u#

#
}u#

#
¢ and u#

$
}u#

$
¢

measured at a number of stations with and without a cascade in the flow, the free-
stream values being measured at the same x

"
stations. A strong reduction in u#

$
is found

downstream of each cascade and this reduction is found to persist as far downstream
as measurements were taken with, at most, a rather slow return back towards isotropy.
The value of u#

$
does not tend to zero in the wake plane as the theory would predict,

owing at least in part to the large mean shear production in the boundary layers and
wakes. u#

"
and u#

#
show smaller reductions which similarly persist downstream. The

anisotropy tensor component a
$$

¯ u#

$
}κ®#

$
is also plotted in this figure.
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$$
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"
; _, u#
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; +, u#

$
; –[–, RDT; ¬, a

$$
. ±±±±±±±±±±±±, u#

"
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x
"
}M h}L¢ (1) h}L¢ (2)

15 0±73 0±41
17 0±68 0±38
19 0±65 0±36
21 0±63 0±35
24 0±59 0±33

T 1. The ratios of h}L¢ for the two cascade cases

The ratios of h}L¢ for the two cascade cases (1 and 2) decrease slowly over the x
"

measurement range as L¢ grows (table 1). The theoretically predicted values of u#

$
}u#

$
¢,

assuming that it is appropriate to use the local value of h}L¢, are also shown in figure
10. The zero gap case predicts that u#

"
}u#

"
¢ and u#

#
}u#

#
¢ should both take the value 0±75

downstream of the cascades. The measured values, particularly of u#

#
, are somewhat

lower, whereas the small non-zero gap values would be predicted to be slightly higher.
The value of u#

$
}u#

$
¢ measured in the plane of a plate was larger, probably because of

the large production of turbulence in the boundary-layer wake region and effects of
leading-edge distortion.

Spectra of u
"
, u

#
and u

$
taken in the mid-planes of the gaps are shown in figures 11,

12 and 13. In figure 11, the measured data are compared with the theoretical results for
Θ

""
for infinitesimal gap. Figure 12 shows similar results for the spectrum of the

transverse component, Θ
##

. The low-frequency asymptote for the Θ
##

spectrum is
predicted by RDT to be proportional to k

"
. The measured data have much higher

values of Θ
##

at low frequency. However, the Θ
##

spectrum predicted by RDT is
sensitive at the low-frequency end both to gap size and to distance from the plane of
a plate. Figure 12 also shows the predicted spectra for the same gap size (h}L¢ ¯ 0±6)
as the measurements in both a mid-plane (x!

$
¯ "

#
h) and in a plate plane (x!

$
¯ 0). The

low-frequency end of the spectrum is not greatly changed by gap size in the mid-plane
but increasing gap size significantly increases Θ

##
(k

"
U 0) in the plane of a plate. The
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measured results agree much better with the latter although they were measured in a
mid-plane downstream of the cascade. This may be due to effects of turbulent diffusion
between the mid- and plate planes or to some other unaccounted disturbance. The
difference between the low-frequency Θ

##
spectra at x!

$
¯ 0 and x!

$
¯ "

#
h is indicative

that the contribution from the turbulence to the u
#

component at low frequency
downstream comes primarily from long streamwise eddies lying between the plate
planes.
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In the case of the component normal to the cascade plates the theory for the
infinitessimal gap gives Θ

$$
¯ 0 and the measurements for this case which is similarly

very sensitive to gap size (figure 9) are compared with the mid-gap theoretical result for
the corresponding finite gap. In each case, the measured spectrum at the low-frequency
end is distorted in the same way qualitatively, but by a smaller amount than is
predicted by the theory, away from the corresponding spectrum for the undisturbed
turbulence. At the high-frequency end, the spectra all show evidence of additional
production of small-scale turbulence. This degree of increase is not similarly seen in the
moving wall data (Thomas & Hancock 1977) and is attributed to the boundary layer
and wake turbulence production being distributed, by turbulent diffusion, over the
whole flow width downstream so that it is also seen in the mid-plane.

8. Discussion

In the absence of the vortex sheets shed from the trailing edges of the plates the
turbulence would undergo a second rapid distortion as it left the plate and the wall
boundary condition was removed. This would tend to reverse the leading-edge
distortion and restore the status quo except for the residual viscous and nonlinear
effects. Because of the Kutta–Joukowski condition, a trailing vortex sheet wake is shed
so that flow off a streamwise plate is not the reverse of flow onto the plate. The strength
of the two components of the vortex sheet (γ

"
,γ

#
) can be calculated from the x

#
and

x
"
derivatives of the discontinuity in potential at the trailing edge (equation (11)). For

each wavenumber k and finite h this is :

(γ
"
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#
)¯

(2ik
#
,®2ik

"
) (cosh τh®cosk

$
h)

τ sinh τh
exp(i(ωt®k

"
x
"
®k

#
x
#
)). (31)

The turbulence downstream of the cascade, according to RDT, is therefore composed
of these vortex sheets added to the original vorticity of the turbulence.
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In the limit as the gap hU 0 and considering the two fields to be completely mixed
within an O(L¢) distance (x

"
®c)( h downstream of the trailing edges, the resulting

vorticity is
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This vorticity field is consistent with the velocity field derived previously, the last
component, ω

$
¢, being unchanged by the cascade. The result is a change in the

enstrophy Ω¯ "

#
ω
j
ω
j
, of the turbulence. From equation (32) for wavenumber k, the

change is :
∆Ω¯®"

#
(k%}τ#) u#

$
¢.

This is a reduction in enstrophy owing to the shedding of the vortex sheets by the
plates, since according to RDT there is no change of the vorticity in the flow away from
the wall due to its blocking action. Even in the limit h¯ 0 for which u#

$
¯ 0 the

turbulence is clearly not two-dimensional since it contains all three components of
vorticity but of strength such that the turbulence velocity field is everywhere in the (1,
2) plane, analogous to a general parallel shear flow. Two-dimensional turbulence is
realizable experimentally, for instance by generating it in a soap film (Gharib &
Derango 1989; Goldburg, Rutgers & Wu 1996). In the present case, spectra of the
developed turbulence well downstream of the cascade have not been measured. In the
near downstream region, where they have been measured, Θ

""
and Θ

##
do not show any

sign of the high-wavenumber k−$ behaviour found in two-dimensional turbulence. The
measurements (figures 1 and 10) of u#

"
, u#

#
and u#

$
, as far as they have been taken

downstream of the cascade, indicate that the return to isotropy is very slow, as has been
observed for highly anisotropic turbulence downstream of a contraction (Uberoi 1956).
The rate of return of the large scales which have been distorted by the blocking action
may, however, be partly masked by the behaviour of the small scales which are
generated in the mean shear regions.

Since u
$
¯ 0 in the theoretically predicted downstream turbulence for the zero gap

size limit, the transport equation for the component of vorticity ω
$
normal to the plates

is :
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These are the same equations which govern two-dimensional turbulence except for the
additional diffusion term ν¥#ω

$
}¥x#

$
. The evolution of the turbulence in each (1, 2) plane

is therefore similar to a two-dimensional turbulence, the added diffusion giving
somewhat the effect of a lower Reynolds number. For turbulence adjacent to an
impermeable surface there is a near balance between the ‘splats ’ (inward surface-
normal motion converted by the surface into outward tangential spreading) and
‘antisplats ’ (the opposite). This causes the pressure-strain (which would otherwise
redistribute energy from the more energetic tangential Reynolds stresses into the less
energetic surface-normal stresses) to be small. In the case of a cascade for which the gap
is small, a ‘splat ’ on one surface is an ‘antisplat ’ on the opposing surface. In the limit
of zero gap, since u

$
is zero, the pressure-strain and turbulent diffusion terms in the
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transport equation for u#

$
are also zero. Hence, there would be zero growth rate for this

Reynolds stress.
The measured spectra show less reduction of the low-wavenumber components than

predicted by RDT, which may be due to the finite gap and thickness of the cascade
aerofoils and also to their finite chord which limits nonlinear and viscous effects but
also limits the effectiveness of the cascade in suppressing u

$
. The high-frequency parts

of the spectra are significantly raised above the theoretical prediction, largely owing to
small-scale production in the mean shear layers which are generated.

The optimum cascade to generate a nearly planar turbulence at a given Reynolds
number has not been investigated here. Increasing plate chord increases cascade
effectiveness but also increases the overall nonlinear and viscous effects in the flow. Too
small a gap similarly increases the viscous effects. Complete suppression of turbulence
is only approximately achievable by a high-resistance narrow-gap array, which also
reduces u#

"
directly through viscous resistance more effectively if the cascade has

surfaces in both cross-stream directions, i.e. if it is a honeycomb.

9. Conclusions

Results have been obtained based on the assumptions of rapid distortion theory for
the effect of passing homogeneous isotropic turbulence through a cascade of thin
streamwise plates. Suppression of the transverse component of turbulent velocity
normal to the plates is predicted, which should be complete in the limit when the
cascade gap to turbulence lengthscale ratio goes to zero. This suppression is predicted
to continue downstream of the cascade owing to the vortex sheet wakes which are shed
into the downstream flow. The resulting ‘planar ’ turbulence field is analogous to a
general plane shear.

Measurements have been made in a wind tunnel of turbulent flow emerging from a
cascade, obtained by passing nearly isotropic grid generated turbulence through
cascades of thin plates and aerofoils with finite gaps. The cascades are shown to affect
the turbulence in a similar way to that predicted by the theory for zero gap. However,
the variances of the three velocity components of the turbulence downstream of the
cascade are higher than predicted. Part of this is due to the finite gap sizes used in the
experiments. Measurements of variances taken behind single and double (biplane)
streamwise plates show similar agreement with the theory, with higher levels of
turbulence found in the regions of the plate planes. These are probably partly due to
production in the boundary- and wake shear layers of the plates and partly due to
turbulence having previously passed through the local strain field of a plate leading
edge.

Calculation of some of the spectral and variances downstream of a cascade from the
theory for finite gap show that the results are very sensitive to gap size, and at the low-
frequency end of the spectrum to the position across the gap at which the turbulence
is measured. At the high-frequency end neither the measured spectra at moderate
distances downstream of the cascade, nor RDT theory, show the faster k−$ fall-off in
power that is expected for a fully developed two-dimensional turbulence. The stations
where the turbulence quantities were measured were downstream of the plate trailing
edges and hence always at distances downstream of the onset of distortion (at the
leading edges) which are large compared with the lengthscale of the turbulence. At such
distances, the distortion has acted on the turbulence for a time which cannot properly
be considered to be small compared with the eddy turnover time. Analagous to what
has been shown previously for walls and slip surfaces, the normal component of the
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turbulence remains suppressed approximately as predicted by RDT over considerable
distances but the streamwise and transverse components tend to values above those
predicted.
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